Interpolatory Subdivision Schemes Induced by Box Splines
نویسندگان
چکیده
This paper is devoted to a study of interpolatory refinable functions. If a refinable function φ on Rs is continuous and fundamental, i.e., φ(0) = 1 and φ(α) = 0 for α ∈ Zs\{0}, then its corresponding mask b satisfies b(0) = 1 and b(2α) = 0 for all α ∈ Zs\{0}. Such a refinement mask is called an interpolatory mask. We establish the existence and uniqueness of interpolatory masks which are induced by masks of box splines whose shifts are linearly independent. 2000
منابع مشابه
A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines
This paper describes an algebraic construction of bivariate interpolatory subdivision masks induced by three-directional box spline subdivision schemes. Specifically, given a three-directional box spline, we address the problem of defining a corresponding interpolatory subdivision scheme by constructing an appropriate correction mask to convolve with the three-directional box spline mask. The p...
متن کاملTernary interpolatory Subdivision Schemes Originated from splines
A generic technique for construction of ternary interpolatory subdivision schemes, which is based on polynomial and discrete splines, is presented. These schemes have rational symbols. The symbols are explicitly presented in the paper. This is accompanied by a detailed description of the design of the refinement masks and by algorithms that verify the convergence of these schemes. In addition, ...
متن کاملA Construction of Bi orthogonal Functions to B splines with Multiple Knots
We present a construction of a re nable compactly supported vector of functions which is bi orthogonal to the vector of B splines of a given degree with multiple knots at the integers with prescribed multiplicity The construction is based on Hermite interpolatory subdivision schemes and on the relation between B splines and divided di erences The bi orthogonal vector of functions is shown to be...
متن کاملFrom approximating to interpolatory non-stationary subdivision schemes with the same generation properties
In this paper we describe a general, computationally feasible strategy to deduce a family of interpolatory non-stationary subdivision schemes from a symmetric non-stationary, non-interpolatory one satisfying quite mild assumptions. To achieve this result we extend our previous work [C. Conti, L. Gemignani, L. Romani, Linear Algebra Appl. 431 (2009), no. 10, 1971– 1987] to full generality by rem...
متن کاملNon-uniform interpolatory subdivision via splines
We present a framework for deriving non-uniform interpolatory subdivision algorithms closely related to non-uniform spline interpolants. Families of symmetric non-uniform interpolatory 2n-point schemes of smoothness C are presented for n = 2, 3, 4 and even higher order, as well as a variety of non-uniform 6-point schemes with C continuity.
متن کامل